An Introduction to Avidin-Biotin Technology and Options for Biotinylation

Avidin-biotin chemistry represents an enormous toolbox for the biological researcher, owing to the extremely high affinity of biotin for its binding proteins, avidin and streptavidin, as well as the ability to detect the interaction by nonradioactive methods. Early research in the 1920s to 1950s focused primarily on the nutritional implications of biotin and its importance as a coenzyme for carboxylases. Beginning in the early 1970s, however, the avidin-biotin interaction began to be exploited as a research tool, with several techniques being developed in broad areas such as affinity chromatography, blotting, ELISA, hybridization, and others. Specialized techniques, improvements, and new adaptations continue to be developed, limited only by the creativity, vision, and needs of the researcher. It is the intent of this author to provide an overview of avidin-biotin chemistry with particular emphasis on biotinylation reagents that are commonly available. For more detailed reviews, the reader is referred to earlier works (1, 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 42.79 Price includes VAT (France)

Softcover Book EUR 52.74 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Similar content being viewed by others

Recent advances in the engineering and application of streptavidin-like molecules

Article 01 August 2019

Antibodies to biotin enable large-scale detection of biotinylation sites on proteins

Article 16 October 2017

Preparation of Colloidal Gold Particles and Conjugation to Protein A/G/L, IgG, F(ab′)2, and Streptavidin

Chapter © 2016

References

  1. Savage, M.D., Mattson, G., Desai, S., Nielander, G. W., Morgensen, S. and Conklin, E.J. (1992) In: Avidin-Biotin Chemistry: A Handbook, Pierce Chemical Company, Rockford, IL. Google Scholar
  2. Wilchek, M. and Bayer, E.A. (1988) Anal. Biochem. 171, 1–32. ArticlePubMedCASGoogle Scholar
  3. Green, N.M. (1975) In: Advances in Protein Chemistry, Academic Press, New York. Google Scholar
  4. Donovan, J.W. and Ross, K.D. (1973) Biochemistry12, 512–517. ArticlePubMedCASGoogle Scholar
  5. Pai, C.H. and Lichstein, H.C. (1964) Proc. Soc. Exp. Biol. Med. 116, 197–200. PubMedCASGoogle Scholar
  6. Wei, R.-D. and Wright, L.D. (1964) Proc. Soc. Exp. Biol. Med. 117, 341–344. PubMedCASGoogle Scholar
  7. Ross, S.E., Carson, S.D. and Fink, L.M. (1986) BioTechniques4, 350–354. Google Scholar
  8. Green, N.M. (1963) Biochem. J. 89, 609–620. PubMedCASGoogle Scholar
  9. Cuatrecasas, P. and Wilchek, M. (1968) Biochem. Biophys. Res. Commun. 33, 235–246. ArticlePubMedCASGoogle Scholar
  10. Bodansky, A. and Bodansky, M. (1970) Experientia26, 327. ArticleGoogle Scholar
  11. Woolley, D.W. and Longsworth, L.G. (1942) J. Biol. Chem. 142, 285–290. CASGoogle Scholar
  12. Dayhoff, M. O. (1972) In: Atlas of Protein Sequence and Structure, Vol. 5, National Biomedical Research Foundation, Washington, D.C. Google Scholar
  13. Green, N.M. (1966) Biochem. J. 101, 774–780. PubMedCASGoogle Scholar
  14. Chaiet, L. and Wolf, F.J. (1964) Arch. Biochem. Biophys. 106, 1–5. ArticleCASGoogle Scholar
  15. Chaiet, L., Miller, T.W., Tausig, F. and Wolf, F. J. (1963) Antimicrob. Ag. Chemother. 3, 28–32. Google Scholar
  16. Sano, T. and Cantor, C.R. (1990) J. Biol. Chem. 265, 3369–3373. PubMedCASGoogle Scholar
  17. Gitlin, G., Bayer, E.A. and Wilchek, M. (1988) Biochem. J. 250, 291–294. PubMedCASGoogle Scholar
  18. Merck Index, (1989) 11th Edition, Merck & Co., Rahway, NJ, p. 192. Google Scholar
  19. Al-Hakim, A.H. and Hull, R. (1986) Nucl. Acid Res. 14, 9965–9976. ArticleCASGoogle Scholar
  20. Chastain, J.L., Bowers-Komro, D.M. and McCormick, D.B. (1985) J. Chrom. 330, 153–158. ArticleCASGoogle Scholar
  21. Lin, H.J. and Kirsch, J.F. (1977) Anal. Biochem. 81, 442–446. ArticlePubMedCASGoogle Scholar
  22. McCormick, D.B. and Roth, J.A. (1970) Meth. Enzvmol. 18A, 418–424. ArticleGoogle Scholar
  23. Mock, D.M., Langford, G., DuBois, D., Criscimagna, N. and Horowitz, P. (1985) Anal. Biochem. 151, 178–181. ArticlePubMedCASGoogle Scholar
  24. Green, N.M. (1965) Biochem. J. 94, 23c - 24c. PubMedCASGoogle Scholar
  25. Wilchek, M. and Bayer, E.A. (1988) Anal. Biochem. 171, 1–32. ArticlePubMedCASGoogle Scholar
  26. Ellman, G.L. (1959) Arch. Biochem. Biophys. 82, 70–77. ArticlePubMedCASGoogle Scholar
  27. Riddles, P.W., Blakeley, R.L. and Zerner, B. (1979) Anal. Biochem. 94, 75–81. ArticlePubMedCASGoogle Scholar
  28. On, G.A. (1981) J. Biol. Chem. 256, 761–766. Google Scholar
  29. Lomant, A.J. and Fairbanks, G. (1976) J. Mol. Biol. 104, 243–261. ArticlePubMedCASGoogle Scholar
  30. Staros, J.V. (1988) Account Chem. Res. 21, 435–441. ArticleCASGoogle Scholar
  31. Cuatrecasas, P. and Parikh, I. (1972) Biochemistry11, 2291–2299. ArticlePubMedCASGoogle Scholar
  32. Carlsson, J., Drevin, H. and Axen, R. (1978) Biochem. J. 173, 723–737. PubMedCASGoogle Scholar
  33. Partis, M.D., Griffiths, D.G., Roberts, G.C. and Beechey, R.B. (1983) J. Prot. Chem. 2, 263–277. ArticleCASGoogle Scholar
  34. Abdella, P.M., Smith, P.K. and Royer, G.P. (1979) Biochem. Biophys. Res. Comm. 87, 734–742. ArticlePubMedCASGoogle Scholar
  35. Hoffman, W.L. and O’Shannessy, D.J. (1988)J. Immunol. Meth. 112, 113–120. Google Scholar
  36. O’Shannessy, D.J. and Quarles, R.H. (1985) J. Appl. Biochem. 7, 347–355. PubMedGoogle Scholar
  37. O’Shannessy, D.J., Voorstad, P.J. and Quarles, R.H. (1987) Anal. Biochem. 163. 204–209. ArticlePubMedGoogle Scholar
  38. Heitzmann, H. and Richards, F.M. (1974) Proc. Natl. Acad. Sci. USA71, 3537–3541. ArticlePubMedCASGoogle Scholar
  39. Skutelsky, E. and Bayer, E.A. (1983) J. Cell Biol. 96, 184–190. ArticlePubMedCASGoogle Scholar
  40. Roffman, E.. Meromsky, L., Ben-Hur, H., Bayer. E.A. and Wilchek, M. (1986) Biochem. Biophvs. Res. Comm. 136, 80–85. ArticleCASGoogle Scholar
  41. Bayer. E.A., Ben-Hur, H. and Wilchek, M. (1988) Anal. Biochem. 170, 271–281. ArticlePubMedCASGoogle Scholar
  42. Grabarek, Z. and Gergely. J. (1990) Anal. Biochem. 185, 131–135. ArticlePubMedCASGoogle Scholar
  43. Rosenberg, M.B., Hawrot, E. and Breakefield, X.O. (1986) J. Neurochem. 46. 641–648. ArticlePubMedCASGoogle Scholar
  44. Gilles, M.A., Hudson, A.Q. and Borders, Jr., C.I. (1990) Anal. Biochem. 184. 244–248. ArticlePubMedCASGoogle Scholar
  45. Stuchbury, T.. Shipton, M.. Norris, R. and Malthouse, J.P.G. (1975) Biochem. J. 151, 417–432. PubMedCASGoogle Scholar
  46. Duncan, R.J.S., Weston, P.D. and Wrigglesworth, R. (1983) Anal. Biochem. 132, 68–73. ArticlePubMedCASGoogle Scholar
  47. Jue, R., Lambert, J.M., Pierce, L.R. and Traut, R.R. (1978) Biochemistry17, 5399–5405. ArticlePubMedCASGoogle Scholar
  48. Yoshitake, S., Yamada, Y., Ishikawa, E. and Masseyeff, R. (1979) Eau: J. Biochem. 101. 395–399. ArticleCASGoogle Scholar
  49. Crestfield, A.M., Moore, S. and Stein, W.H. (1963) J. Biol. Chem. 238, 622–627. PubMedCASGoogle Scholar
  50. Gurd. F.R.N. (1967) Methods Enzymol. 11, 532–541. ArticleCASGoogle Scholar
  51. Means. G.E. and Feeney. R.E. (1971) In: Protein Modification, Holden-Day, San Francisco, CA, p. 112. Google Scholar
  52. Das. M. and Fox, C.F. (1979) Ann. Rer. Biophvs. Bioeng. 8, 165–193. ArticleCASGoogle Scholar
  53. Staros, J.V. (1980) TIBS, Dec., 320–322. Google Scholar
  54. Forster. A.C., McInnes. J.L., Skingle, D.C. and Symons, R.H. (1985) Nucl. Acids Res. 13, 745–761. ArticlePubMedCASGoogle Scholar
  55. Keller, G.H., Huang, D.-P. and Manak. M.M. (1989) Anal. Biochem. 177, 392–395. ArticlePubMedCASGoogle Scholar
  1. M. Dean Savage